Pharmacology and chemistry of *Myristica fragrans* Houtt. – a review

P G Latha, P G Sindhu¹, S R Suja, B S Geetha, P Pushpangadan² & S Rajasekharan

Tropical Botanic Garden and Research Institute
Palode, Trivandrum – 695 562, Kerala, India.
E-mail: lathagopalakrishnan@yahoo.com

Received 12 August 2004; Revised 10 March 2005; Accepted 20 June 2005

Abstract

The information available on the pharmacology and chemistry of nutmeg (*Myristica fragrans*) has been reviewed and the areas of interest for further investigation have been suggested.

Key words: chemistry, *Myristica fragrans*, nutmeg, pharmacology.

Introduction

Nutmeg (*Myristica fragrans* Houtt.) (Family: Myristicaceae) is believed to be a native of Banda Islands of Eastern Indonesia, formerly called the ‘Spice Islands’. In India it is mainly cultivated in South India, particularly in certain pockets of Kerala, Tamil Nadu and Karnataka, having been introduced by the British during the 18th century (Krishnamoorthy et al. 2001). The name ‘Myristica’ is derived from the Greek word ‘Myron’, a sweet liquid distilled from the plant (Everett 1981).

M. fragrans is a dioecious or monoecious tree, bushy and evergreen, 9–12 m tall. The fruit is a one-seeded fleshy drupe, succulent, pendulous, smooth, 6–9 cms long and nearly as broad. When the fruit ripens, the aromatic orange yellow pericarp, about 1.3 cm thick splits into two halves along the suture to expose the albuminous seed, the nutmeg and the red, fleshy, lobed net-like aril or mace. Nutmeg and mace are the two major primary products of *M. fragrans* and are commercially considered as spices (Krishnamoorthy & Rema 2001).

Pharmacological studies

Antimicrobial effects

The essential oils from *M. fragrans* seeds are used in tonics (Purseglove 1968). They showed inhibitory effects against *Bacillus anthracis*, *B. mycoides*, *B. pumilus*, *B. subtilis*, *Escherichia coli*, *Saccharomyces cerevisiae*, *Shigella* spp. I and II and pathogenic staphylococci (Bhat & Broker 1953; Pathak et al. 1979; Satyavathy et al. 1987; Minakshi et al. 1999). It inhibited the growth of *Listeria monocytogenes* by suppressing the production of the bacterial extracellular protein, listeriolsyn and the bacterial enzyme phospholipase (Palmer et al. 2002). *M. fragrans* extract showed mild antibacterial activity against pathogenic staphylococci (Bhat & Broker 1953). The aqueous paste of *M. fragrans* seed had a marked inhibitory effect on the

¹Propyl Packs Pvt. Ltd, Kodungalloor, Trichur – 680 567, Kerala, India

²National Botanical Research Institute, Lucknow – 226 001, Uttar Pradesh, India
fluid accumulation capabilities of enterotoxigenic *E. coli*, in the ligated gut of rabbit. It had no effect, however, on bacterial growth and production of enterotoxin by the organism *in vitro* (Rasheed & Misra 1984). Strong antibacterial activity was shown by the methanol extract of *M. fragrans* seed against multi-drug resistant *Salmonella typhi* (Rani & Khullar 2004), with the minimum inhibitory concentration (MIC) of 12.5 µg ml⁻¹.

The mace of *M. fragrans* showed antimicrobial properties against *Staphylococcus aureus* and *Candida albicans* (Orabi & Mossa 1991) at MIC of 1 µg ml⁻¹ and 4 µg ml⁻¹, respectively. Dehydro-di-isoeugenol and 5-methoxy eugenol from mace helped to prevent dental caries caused by *Streptococcus mutans* (Hattori & Hada 1986). Methanolic extract of *M. fragrans* mace was reported to inhibit the growth of the gram negative bacterium, *Helicobacter pylori*, which is a human carcinogen (Bhamarapravati et al. 2003).

Cytotoxic, anticancer and chemoprotective effects

Extracts of nutmeg suppressed the growth of human lymphoid leukaemic cells, Molt 4 B (Moteki et al. 2002). Myristicin, present in the volatile oil of *M. fragrans* is a potential cancer chemopreventive agent (Zheng et al. 1992). The essential oil is reported to modulate the formation of DNA adducts by aflatoxin *in vitro* (Hashim et al. 1994). The dihydroguaiaretic acid from *M. fragrans* mace protected from bone marrow genotoxicity in male Swiss albino mice (Kumari 1992). It also significantly protected from methylcholanthrene-induced carcinogenesis in uterine cervix of mice (Hussain & Rao 1991) and had chemopreventive effects on dimethylbenz(a)anthracene (DMBA)-induced papillo-magenesis in the skin of mouse (Jannu et al. 1991).

Hepatoprotective effects

Myristicin from nutmeg exhibited significant hepatoprotective effects (Morita et al. 2003). The mace is reported to modulate glutathione-S-transferase activity in mouse liver (Kumari & Rao 1989; Singh & Rao 1993). Active principles present in the aqueous extract of mace were effective in transmammary modulation of hepatic xenobiotic metabolizing enzymes in the liver of mouse pups (Chhabra & Rao 1994). These active principles from mace also influenced the hepatic detoxification systems in adult mice (Shin & Kim 1988; Kumari & Rao 1989; Singh & Rao 1993).

Antioxidant effects

Nutmeg essential oils are powerful antioxidants (Dorman et al. 2000). *M. fragrans* seeds are reported to possess antilipid–peroxidant properties (Hattori et al. 1993).

Antiinflammatory effects

The nutmeg oil showed pharmacological properties, similar to those of non-steroidal anti-inflammatory drugs (Olajide et al. 2000). It inhibited prostaglandin synthesis in rat kidney (Misra et al. 1978). *M. fragrans* seeds as well as the mace showed anti-inflammatory effects, similar to indomethacin and this was due to the presence of myristicin (Ozaki et al. 1989).

Antithrombotic effects

M. fragrans seeds (chloroform extract), as well as nutmeg oil, are reported to inhibit platelet aggregation and hence showed antithrombotic effects (Janssens & Laekeman 1990; Olajide et al. 1999, 2000).

Hypolipidaemic and antiatherosclerotic effects

M. fragrans seeds showed significant hypolipidaemic, anticholesterolaemic and antiatherosclerotic effects in rabbits (Sharma & Mathur 1995; Ram et al. 1996; Capasso et al. 2000).

Behavioural effects

Nutmeg and mace are called psychotropic spices (Forrest & Heacock 1972). The seed oil has a depressent effect on isolated frog rectus and direct relaxant effect on rat ileum. It also potentiated hexobarbital–induced hypnosis in rats (Bhagwat & Saifi 1980).
Pharmacology and chemistry of Myristica fragrans

f. fragrans seeds exhibited anticonvulsant (Sonavane *et al.* 2004), anxiogenic, sedative and analgesic effects (Shidore & Majumdar 1985; Sonavane *et al.* 2001, 2002). Ligroin extract of nutmeg increased the duration of sleep in chicken (Sherry *et al.* 1982).

Miscellaneous effects

The aphrodisiac property of nutmeg has been reported (Tajuddin *et al.* 2003). Nutmeg oil showed antipyretic effects in rats and mice (Olajide *et al.* 2000). Insulin-like biological activity of *M. fragrans* aqueous extracts has been reported (Broadhurst *et al.* 2000). The antiulcer (Capasso *et al.* 2000) and anti-diarrhoeal (Gupta & Yadava 1992) activities of *M. fragrans* seeds have been reported. *M. fragrans* seed suspension had no harmful effect on blood pressure (Grover *et al.* 2002). Sastre *et al.* (1996) reported the development of occupational asthma on inhalation of mace dust.

Toxicological effects

Toxicological effects including weak pulse, hypothermia, delirium, vertigo and nausea associated with ingestion of *M. fragrans* has been reported (Hallstom & Thu vander 1997). Zaki & El (1987) reported teratogenic effects of nutmeg in foetus of rats. Randerath *et al.* (1993) reported the development of covalent DNA adducts in the liver of adult and foetal mice, treated with extracts of nutmeg or mace or myristicin, the major spice constituent of nutmeg. Safrole, a minor constituent of nutmeg also produced DNA adducts in the liver of mice.

Pesticidal properties

The aqueous decoction of *M. fragrans* seed is toxic to cockroaches (Krishnamoorthy *et al.* 2001). Nematicidal activity of *M. fragrans* seed against *Meloidogyne incognita* has been reported (Gotke & Maheswari 1990).

Phytochemical studies

Satyavathy *et al.* (1987) and Thakur *et al.* (1989) have reviewed the phytochemistry of *M. fragrans*. The seed contains about 10% essential oil (Vergheese 2001; Maya *et al.* 2004), which is mostly composed of terpene hydrocarbons (α-pinenes, camphene, p-cymene, sabinene, β-phellandrene, γ-terpinene, limonene, myrcene (60% to 90%), terpene derivatives (linalool, geraniol, terpineol-5% to 15%) and phenylpropanes (myristicin, elemicin, safrole-2% to 20%). The presence of myristicin and elemicin, in the seed of *M. fragrans* is one of the reasons for its intoxicating effects (Sonavane *et al.* 2001). Myristicin constitutes 4%–6% of nutmeg and mace essential oil and is responsible for most of its pharmacological effects. Oil of mace (up to 12% in the spice) contains the same aroma components in slightly different amounts. Although essential oils are the same in both seed and mace, the flavours are different. In addition to the known monoterpene hydrocarbons, α-p-dimethylstyrene has been identified along with seven esters, eight sesquiterpene hydrocarbons and two unsaturated aliphatic compounds namely, 3-methyl-4-decan-1-ol and its acetate (Schenk & Lamparsky 1981).

Gopalakrishnan (1992) has made extensive studies on the composition of nutmeg and mace. The seeds also contain 25%–30% fixed oils (myristic, stearic, palmitic, oleic, linoleic and lauric acids). Besides, the seeds contain saponins, polyphenols, tannins, epicatechin, triterpenic sapogenins and fats (Varshney & Sharma 1968; Sathyavathy *et al.* 1987). Nutmeg has also been reported to contain calcium, phosphorous, iron, thiamine, riboflavin and niacin (Gopalan *et al.* 1984). Chromatography of the nutmeg extract revealed the presence of epicatechin and cyanidin (Gopalakrishnan & Mathew 1983). Kim & Park (1991) isolated Licarin B from the seeds of *M. fragrans*. Malabaricone C isolated from nutmeg had significant antibacterial effects (Shinohara *et al.* 1999).

The colour of mace is an important factor, influencing its commercial value. The red pigment of mace was identified to be lycopene by thin layer chromatography and absorption studies (Gopalakrishnan 1979). The neolignans, fragnasol C and D and myristicanol A and D have been isolated from
mace (Rastogi & Mehrotra 1995; Miyasawa et al. 1996). A neolignan, characterized as dihydro-di-isoeugenol was isolated from the hexane and chloroform extracts of *M. fragrans* arils (Purushothaman & Sarada 1980). Five phenyl propanoids had been reported from the seed kernel of the plant (Irogi et al. 1973). Dihydrguaiaretic acid has been isolated from the mace of nutmeg (Park et al. 1998).

The fresh pericarp of the ripe fruit contains an acidic astringent juice with an aromatic flavour. The composition of the fruit rind was found to contain proteins, fats, minerals, phosphorous, iron and carotene (Anonymous 1962; Gopalan et al. 1984). The rind contained up to 14% pectin and 27% fibre (Preethi & Krishnankutty 1986; Gopalakrishnan 1992). Perhaps, the high pectin content of the pericarp is responsible for its antidiarrhoeal effects, reported in ayurvedic treatises.

The major chemical composition of nutmeg, mace and pericarp are given in Table 1.

Conclusion

There is significant evidence for the pharmacological basis of the traditional medicinal use of *M. fragrans*. Though the existing chemical and pharmacological literature on *M. fragrans* is impressive, more topics remain open to future investigation like characterization of the still unexplored phytocemicals, their mechanisms of action and the clinical efficacy in long term trials with special reference to herbal formulations developed from *M. fragrans* for insomnia, heart disease, peptic ulcers and oral care.

The high quantity of pectin present in *M. fragrans* pericarp, can be put to use in the

| Table 1. Chemical composition of *Myristica fragrans* fruit |
|-----------------|----------------|----------------|
| Chemical composition | Part of the fruit | References |
| Proteins | Seed, mace | Gopalakrishnan (1992) |
| Sugars | Seed, mace | Gopalakrishnan (1992) |
| Starch | Seed, mace | Gopalakrishnan (1992) |
| Myristicin | Seed, mace | Satyavathy et al. (1987) |
| Elemicin | Seed | Satyavathy et al. (1987) |
| Saffrole | Seed | Satyavathy et al. (1987) |
| Fixed oils | Seed | Gopalakrishnan (1992) |
| Saponins | Seed | Varshney & Sharma (1968) |
| Tannins | Seed | Varshney & Sharma (1968) |
| Epicatechin | Seed | Varshney & Sharma (1968) |
| Monoterpane alcohols | Seed | Schenk & Lamparsky (1981) |
| Fats | Seed, pericarp | Varshney & Sharma (1968) |
| Calcium | Seed | Gopalan et al. (1984) |
| Phosphorous | Seed, pericarp | Gopalan et al. (1984) |
| Iron | Seed, pericarp | Gopalan et al. (1984) |
| Thiamin | Seed | Gopalan et al. (1984) |
| Riboflavin | Seed | Gopalan et al. (1984) |
| Niacin | Seed | Gopalan et al. (1984) |
| Epicatechin | Seed | Gopalakrishnan & Mathew (1983) |
| Cyanidine | Seed | Gopalakrishnan & Mathew (1983) |
| Licarin B | Seed | Kim & Park (1991) |
| Malabaricone C | Seed | Shinohara et al. (1999) |
| Neolignans | Mace | Miyasawa et al. (1996) |
| Dihydroguaiaretic acid | Mace | Park et al. (1998) |
| Carotene | Pericarp | Gopalan et al. (1984) |
| Pectin | Pericarp | Preethi & Krishnankutty (1986) |
| Phenyl propanoid ethers | Seed | Krishnamoorthy & Rema (2001) |
preparation of jams and jellies and development of natural and safe plasma substitutes and antidiarrhoeal agents.

Acknowledgement
The authors thank Dr G M Nair, Director, Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, for facilities provided and encouragement.

References

Hattori M, Yang X W, Miyashiro H & Namba T 1993 Inhibitory effects of monomeric and...

Janssens J & Laekeman G M 1990 Nutmeg oil identification and quantification of its most active constituent as inhibitors of platelet aggregation. J. Ethnopharmacol. 29: 179–188.

